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ABSTRACT

An abstract approximation framework for the identification of nonlinear distributed parameter

systems is developed. Inverse problems for nonlinear systems governed by strongly maximal mono-

(o) tone operators (satisfying a mild continuous dependence condition with respect to the unknown

R A A A A A N

N parameters to be identified) are treated. Convergence of Galerkin approximations and the corre-

sponding solutions of finite dimensional approximating identification problems to a solution of the

original infinite dimensional identification problem is demonstrated using the theory of nonlinear \

-

evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups ’

.A)‘J.’}}}'

of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing

linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic

- -

operators and the corresponding nonlinear parabolic partial differential equations to which they

—a

lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is :

C& Ll

1'..“":’!"“‘".5 . 5

discussed. .
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1. Iatroduction ‘,:
-.;!
. . . t
In this paper we develop a general abstract approximation {ramework s
for the identification of nonlinear distributed parameter evolution systems. A
[
Qur intent is to define relatively straightforward and easily verified Sy
)
5.
criteria that are applicable to broad classes of nonlinear systems; these
criteria will guarantee the convergence of solutions to a sequence of finite N
'
2
dimensional Galerkin approximation based parameter estimation problems to ;2
’
. - . . . o . . . . . . r
a solution of the original, underlying, infinite dimensional identification >,
problem. The results that we present below generalize and extend the :..
-
theory recently developed by Banks and Ito in [2] and [3) for regularly “_
53
<. . . N . N
dissipative or abstract parabolic, linear systems. It is, to the best of our
knowledge, the first such general approximation theory for inverse
problems involving nonlinear distributed systems. -"_
;'-
The sufficient conditions set down in our framework include a ol
relatively mild continuity assumption with respect to the unknown NS
. . . . Ry,
parameters to be identified, an equi-boundedness and an equi-strong By,
Re¥:
.. . . ey )
mongctonicity assumption on the nonlinear operator describing the system ‘Al
dynamics. In additior our theory requires a standard approximation 3
o
assumption on the Galerkin subspaces used to effect the finite dimensional, 'f
N
or finite element, approximations. We demonstrate that solutions to the 1y
finite dimensional identification problems approximate a solution to the o
',
infinite dimensional identification problem via a convergence result for S
. ]
solutions to the forward problems. This result is obtained using the theory a1 For
: : . &I "4 _
of nonlincar evolution systems and a nonlinear analog of the well-known 0 L'
!
. . . . ced 0 iy
Trotter- Kato approximation result for linear semigroups. tion - o
_— - W
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In the present paper, we are concerncd only with theory;
implementation questions and conclusions drawn from our numerical or
computational studies will be reported on elsewhere. Also, while we have
tried to make our framework as versitile as possible, the treatment below
does have limitations. For e{ample, our theory can handle quasi-autonomous
systems but it is not applicable in the fully nonautonomous case. The
development of a general theory which can handle nonlinear systems
involving time dependent operators recquires additional effort and s
currently the focus of our ongoing investigations. The particular
difficulties inherent in the time dependent case will be described in
greater detail in our discussions below,

We provide a brief outline of the remainder of the paper. In Section
2 we state a fundamental existence and uniqueness resuli for infinite
dimensional nonlinear systems and prove a general approximation result
which is especially well suited for application in the context of the inverse
problems which are the central focus of our study. In Section 3 we
define a class of nonlinear distributed systems and the associated
parameter identification problems. We define the Galerkin approximations
and prove the general convergence result. Section 4 contains some examples.
We show that our nonlinear theory subsumes the linear theory presented in
[2] and [3]) as a special case; we also consider the application of our
framework to a class of nonlinear elliptic operators and the corresponding
nonlinear parabolic partial differential equations to which they lead. In
particular, we look at the application of our results to a well known
quasilincar model for heat conduction or mass transfer. In Section 5 we

summarize our findings and provide some concluding remarks.
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2. An Approximation Result for Nonlinear Evolution Systems

Let X, be a Banach spacc with norm [l We consider the nonlincar,

quasiautonomous initial value problem in X, given by

(21 x(D+ Agx (1) Dl ), 0<t<T,

(2.2) x 4(0) =

where xg € X fy [0,T]) =~ X, and the nonlinear operator Ay X, ~ 2)(0 is in
general multivalued, not everywhere defined, and not continuous. The
existence of solutions to the initial value problem (2.1), (2.2) and the
subsequent approximation result to follow, are both consequences of Theorem
2.1 to be given below.

We shall require the following definitions. Let X be a Banach space with
norm |-|y. For A: X - 2X, a nonlinear, multivalued operator, the domain and
range of A are defined by Dom(A) = {x € X: Ax # 0} and R(A) = 0 Ax

XEdom(A)

respectively. We say that the operator A is accretive if for every ) > 0,

X;,X, € Dom(A) and y, € Ax,, y, € Ax, we have

Ix; = X,ix € |xl — X, + x(y1 - y2)|X'

We say that A is m-accretive if A is accretive and R(I + MA) = X for some
A > 0. We note that if A is m-accretive then R(I + XA) = X for every » > 0
and for cach X > 0 the resolvent of A at ), J()\;A): X - X, a single valued,

ecverywhere defined, nonlinear operator on X can be defined as J()\:A)

(I + 2\A)L
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A two parameter family of nonlinear operators {U(ts): 0 € s €t € T)
defined on a subset © € X is called a nonlinear evolution system on Q if for
cach x € @ we have U(t,s)x € & U(s,s)x = x and U(t,r)U(r,s)x = U(ts)x for
0 €t € T and U(t,s)x is continuous from the triangle A = {[s,t}
0 ¢€s <t €T} into X.
A strongly continuous function x: {0,t] = X 1s called a strong solution to

the quasiautonon,ous initial value problem

(2.3) (1) + Ax(t) (), 0<t T

(2.4) x(0) = x°

where f: [0,T] = X and x° € X if x is absolutely continuous on compact

i
- 2

1",‘-’.'&‘..-

subintervals of (0,T), differentiable almost everywhere and satisfies f(t) —

-

x(t) € Ax(t) for almost every t € [0,T] and x(0) = x°.

Theorem 2.1. Let X be a Banach space with norm |-l and suppose that A: X -~

A

2X and f: [0,T] = X appearing in (2.3) satisfy

AN

(1) there exists an w € R for which the operator A + Wl is m-accretive,

¥
I

(2) f€L,(0,T;X).

SAOL

Then a unique, nonlinear evolution system {U(t,s): 0 € s €t € T) on Dom(A) can

7,’.

be constructed which satisfies

-

L JLCrilarat el athl] QAT /i

(i) 1U(ts)d — Uts)dhy € e¥t*Ng ~ iy, for ¢.b € Dom(A) and

0ss <t T,

t

[U(s+t,5)¢ — U(r+t,r)dly < 2[ eDIE(T+s) = £(T+r)l,dT,
0

for all ¢ € Dom(A) and all t > 0 such that s+t, r+t<T.

‘.--"—- X1 Vo 2
® -
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() if x% € Dom( A) and the initial value problem (2.3), (2.4) has a stiong

solution x, then

x(t) = U(t,s)x(s), for 0 €s €t ¢ T.

When x° € Dom( A), tke strongly continuous function x: [0,T] = X given by x(t)

U(1,0)x° is referred to as a mild or generalized solution to (2.3), (2.4).

Theorem 2.1 is a direct consequence of results given by Crandall and
Evans and Evans in [7] and [9]. Henccforth, we shall assume that A X, - 2%
and f; [0,T] = X, satisfy (1) and (2) in the statement of Theorem 2.1 and

that x; € Dom(A,). We then let {(Ugts: 0 ¢ s €t ¢ T} denote the
corresponding nonlinear evolution system on Dom(A,) and consider the

approximation of mild solutions to the initial value problem (2.1), (2.2).

Our approximation result is in the spirit of those given for nonlinear
semigroups and evolution systems by Crandall and Pazy in [8] and Goldstein
in [10]). However, our theorem differs from these earlier treatments in two

ways. First, we require that the time dependent perturbation f, be only L, as

- opposed to it being continuous as in [8] and it satisfying a Lipschitz-like
" condition in [10]. This distinction is especially relevant in the case of control
e
B, . . .

:;.f: systems where discontinuous input is common. The second difference is that
.

P . . . . . .

W we give our result in a form that is most appropriate for application to the
@

:'5 development of a gencral approximation theory or framework and
T
N'; computational schemes for the parameter identification problems to be
‘Yol
K discussed in the next scction.
. - -
{-_@ We shall require some set thcoretic notation. For sets H , n=0,1,2,.., by

1 -

g . .
Al lim H DH_ we shall mean: Given x, € H , there exist x_ €H_such that x_- x,as

i n ] 0 0 n n n ]
U
} '\. n @

2, .N -
@
[T,

~
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] Theorem 2.2. Foreachn € Z% =(1,2,3,..) let X, be a closed linear subspace of Xy
X

Forn=0,1,. let A X -2 " be a possibly multivalued nonlinear operatoron X , and

let fn: (0.T ]~ X, becan Xn-valuea’ measurable function defined on [0,T). Suppose

S that there existsan W

3 s € R, independentof n, for which the operators A+ wl

0
‘,5,‘: are m-accretive, that there existsa function geLi(O,T;XO) jor which |fn(t)| < g(t),
) a.e.t€[0,T], and that lim D_ D D, where D_ = Dom(A_)and D, = Dom(A).

,g Suppose further that for some x0>0we have
¥ (25)  Lim JOg A+ gD, = J0g Ag + wgdg

W whenever ¢ € X with xllx_.ql ¢, = ¢, € X »
o w,
")

K n and that

li_p; £ (1) = f,(t) for a.e.t€[0,T]

N
5

»
»

- Then for each n € Z% there exists a unique nonlinear evolution system (U, (t;s):

Sun

0 €s <t <T)on _Dn corresponding (in the sense of Theorem 2.1) to A and fn

5% 3

A,

and for ¢_€ _Dn with lim ¢ = ¢, € 130 we have
n—®

&

, -.‘\: (2.6) LI_EI; U (ts5)9, = Uy(t,s)d, 0 €s €t <T,
b3

,

o, with the limit being uniform in t for t € [s,T].
‘o::'\-:
o
X ; Proof. We follow Goldstein (see [10], [11]) and use an approach first suggested
Lo
Y
) bv Kisynski [13] for demonstrating the convergence of approximations to

lincar semigroups, to prove the theorem via an application of our existence

o 9 AL
e
P!

result, Theorem 2.1,
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Let x = {§ = (xn):zo: x, € X,n =012, .., and lim x, = Xq} and for
n—bw

n
x € x set Ixt = suplx |- Then I-k defines a norm on the linear vector spacc
n
X, and the space X together with the norm I | i1s a Banach space. Define the
operator A: x - 2X by
dom(A) = {§ = {xn}:=0 €XxX: x_ € Dom(An), and for eachn =12, ..
there exists a y € A x_such that Ll_.r?o Y, = Yo € AgXgh
for x € Dom(A), ¥ = {y,}o_, € Ax if and only if y_€ A x_,

n=01.2 .. and limy =y,
n—c&

Dcfine an essentiaily x-valued function { on the interval [0,T] by f(t) =
{fn(t)}:zo. The assumptions on the [ are such that f (1) = f (1) for almost
every t € [0,T]. However, by appropriately redefining on a set of measure
zero, we may infer from thc assumptions on the functions f_that f[0,T] = x
with f € L (0,T;x).

It is readily seen that the operator A + w1 is m-accretive. Let x! =
(x1)7_o X2 = (x})7_, € Dom(4) and iet y! = (y)?_ € 4x and y? = (y})T_ €
Ax%. Since for each n = 0,1,2, ., A+ wyl is assumed to be m-accretive, for

» > 0 we have

21 _ %20 _ 1 _ 2y ¢ 1 _ 2 1 1 _ (2 2
I x x“ll = Srl;lp Ix;, = xly ¢ s:ljplxn X, + My, + wexp — (yp + wex )l

A A A
=Ix!=x2+xy!' +w

“1 o2 t2
o — (¥ + wx NI,

and therefore that 4 + wyl is accretive. Now let ;I = {yn}:zo € x and sct x =
(xn):zowith x, =J0g A+ WDy n=0]1.2 .. where \;is chosen as in (2.5). It

i1s immediately clear that for each n = 0,1,2, .., x, € Dom(A ) € X . Since

WO

L

L% g LAY "% W AT LY _N‘f - . s LI FA T
X Y :" A S- !e‘ Qe‘"-.’:. b!‘ % O.‘.:ﬁ.awt.ie'l.o,l.:.l'n DO WX W . a,t‘! & W

DR

-

AR A
= OSSR

'b l'.

R B A A A e
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;1 € X we have lim Y, = Yo and therefore, by assumption (2.5), that lim X, =X

n—® n

0
or x € X. Sectting z, = (y, = (1 + X\wx_ )/2g, n = 01,2, ..., it follows that
2 € Anxn and Li_'ﬂ, z, =2, € AOXO. We conclude that )A( € Dom(4), (I +
No(A+wg)X 3y, and that R(1 + A (A4 + wgl) = x.

We have shown that the operator 4 and the function { satisfy conditions
(1) and (2) given in the statement of Theorem 2.1. Therefore, a unique
nonlincar cvolution system {U(t,s): 0 € s €t € T) on 65;0—(,4—) corresponding to
A and f can be constructed with U(t;s) = {Un(t,s)):zo. Using assumption (2.5)

it can be shown that Dom(4) = (x = {x_)°_, € X x, € D_. n = 0,12, .. and

lim x_=x.}. Since R(U(t,;s)) C X, it follows that

n—®

(2.7) Lll’f; Un(t,s)d:n = Uo(t,s)¢0, 0<s<tsT

whenever cbn € f)n and Lx_{x; dJn = ¢0 € I_)o. Since each of thc operators A_ and
the functions fn satisfy conditions (1) and (2) of Theorem 2.1, unique
nonlinear evolution systems (U (ts)0 ¢s £t ¢T)on I_)n corresponding to Al
and fn can be constructed. Recalling that m C nZOB"' we may

dcfinc the family of operators {V(t,s): 0 €s €t € T} on Dom(A4) by
(2.8) V(L)X = (V_ (1) )oy = (U (L)X )0,

for x = {xn}:’:0 € m. Uniqueness (see [9]) dictates that for each n =
0.1.2, .., U"(t‘s)xn = V _(t<)x_ whenever (xn):::o € m. This together
with (2.7) and (2.8) establish (2.6). The fact that the convergence in (2.6)
is uniform in t for t € {s,T] is argued exactly as it was for the
convergence of approximations to nonlinear semigroups in the proof of

Theorem 3.2 in [10].




9.
We note that (2.5) is also a necessary condition for the conclusion to

hold * ¢e, for example, Theorem 1 in [14]).
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.,: 3. An Approximation Theory for Identification Problems
| "Qt‘
(c. . Let H be a real Hilbert space with inner product <.,-> and
12y corresponding norm |- Let V be a reflexive rcal Banach space with
N
e
S norm -1 and let V* be its dual.  (All of our thcory can be developed in
AN
al.’,\'-
- complex spaces if necessary; see [6]).) We denote the usual dual norm on V*
Y
'_';'\: by I-N, and assumec that V is denscly and continuously cmbedded in H
b
:',,\: with |v[ € plvl, v € V, for some positive constant w Identifying H with
Y
»
g
oWl its dual, we obtain ¥ € H = H* C V* For ¢ € V* and v € V the duality
-y pairing between ¢ and v i1s denoted by <¢,v>. When ¢ € H, its pairing
b "!-_"
‘:.;j with v € V agrees with the inner product of ¢ with v. It follows for u €
A
Lo
oAl
A H and v € V that lul, € gu| and Hvl, < p?ivil. Let Q and Z be metric
®
:::_'.f spaces and let Q be a nonempty, sequentially compact, subset of Q. The
;\ spaces @ and Z, and the set Q are referred to as the parameter space, the
--l
e
- . . . .
*‘ obscrvation space, and the admissible parameter set respectively.
( [
A\ : We recall that a single valued operator A:V-V* is hemicontinuous if
"
e
33;3 Iim A(u+tv) = Au for all u,v€V where the limit is taken in the weak sense.
Y t—0
N

For each g € Q let A(q): V ~ V* be a single valued, hemicontinuous, (in

N
a,

O

general, nonlinear) operator satisfying;:

R
."r,. "l.“l M .

»
-
s a

(A) (Continuity): For each v € V, the map q - A(q)v is continuous from

’

5@

Q C Q into V¥,

L)
»

Hh W,

(B) (Equi V- monotonicity): There exist an w € R and an « > 0, both

S &
, I‘ " f .
LAl S

independent of q € Q, such that

AL I
xY

*?

LIPS

{A(q)u — A(Q)V, u=v> + Wu—v|® 2 allu—vi?

P

iy

e

for cvery u,v € V.

N®

‘
4

& ‘_‘r""-;r _‘.{'. N
AN

x

>

g
S
-y

N

U QP Ly e "-,.;ix;;-»’ A R L A R T R TR PR PR
. a Ao .. -,.l N -,-"n'ﬂqi.l l‘l‘a ,.g.l. Fatah "8, .- Ny LRV SRR TR 6O
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(C) (Equi-boundedness). There exist a constant 8 > 0, independent of
g € Q such that
TA(qQ)vil, € B(hvi + 1),

for every v € V.

For cach q € Q, let f(-;q) € L,(0,T;H) and u%a) € H and assume that
the mapping q - u®%q) is continuous from Q € @ into H and that the
mapping q - f(t;q) is continuous from Q C Q into H for almost every t €
[0,T]. Also, for every z € Z, let u - &u;z) be a continuous map from
C(0,T;H) into R™.

We consider parameter identification or inverse problems of the form:

(ID) Given observations z € Z, determine paramecters q € Q which
minimize
¥a) = Huy(q)z)

where u,(q) = uy(-;q) is a mild solution to the initial value problem

(3.1) u(t) + A(qu(t) = f(;q), 0 <t <T,

(3:2) u(0) = u%aq)
corresponding to q € Q.

By a mild solution to (3.1), (3.2) we mean a solution in the sensec of
Thecorem 2.1. To be more precise, for cach q € Q we define the operator
Ayla): Dom(A(q)) C H = H to be the restriction of the operator A(q) to the
subset of V given by Dom(Aq)) = {v € V: A(q)v € H), and prove the

following thcorem.
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Thecorem 3.1. For each q € Q the operator Aqa): Dom(Ao(q)) CH -~ His

densely defined and the operator Ao(q) + wl is m-accretive.

Proof. We first show that for cach q € Q the operator A(q) + wl: V = V¥ is

coercive. If {v } CV with lim v § = = then from assumptions (B) and (C) we

n—ow

obtain
lim <(A(q) + whv v >/lv I

li_p; ((A@Q)v, = A(@)8,v_> + ulvnlz)/llvnll + <A(q)8,v_>/lv 1}
lim {llv_I%/1v 1 — I<A(@)8,v_M/lv_I)

lim (alv_I — 1A(Q)80.) > lim afv_[ - 8 =
n—bQ n—oo

where 8 denotes the zero vector in V. It follows that for each } > 0, the
operator I + XA(q) + wI): V = V* is monotone, everywhere defined on V,
hemicontinuous, and coercive. Consequently R(I + MA(qQ) + wl)) = V* (see
Barbu [6], Theorem I1.1.3) and therefore R + MA Q) + wI)) = H Also, for

u,v € Dom(A (q)), we may use assumption (B) to conclude

ha 2 2 2
I+ — [lu—v|® € [u=v|® + rallu—=vl
i

< Ju—v|? + X{(A(qQ) + whu — (A(qQ) + wl)v, u—v>
= {1 + XA(q) + wD)u — (I + 2MA(q) + wW))v,u—v>

S| + MALQ) + whu — (1 + MA(Q) + W)y Ju—v]|

oty

L4
.

ju=v| €Ju —v + M(Aq(q) + wiu - (A (a) + wv)|

oA
® s,

t
«

whichk proves that Ay(q) + wl is m-accretive on Dom(A (q)) C H.
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u, = J(1/njA(q)+wlu € Dom(Ao(q)). Then, arguing as we have above, we

find
u i+ (1/n)edu_I% ¢ <u = (1/n)A(q)8,u >

$lulfu ] + (1/n)0A(q)8l.lu T
where 6 is again the zero vector in V. But then

(33 (/D + (1/n)(a/2)hu 12 € (1/2)u? + (1/n)(1/2e) 1A (q)81?

< (1/2)|u? + (1/n)(B%/2q),

from which it immediately follows that the u, are uniformly bounded in H.
Indeed, from (3.3) we see that (1/n)lu_I* and, hence fu_U/VT, is bounded so
that llun|l/n—oO as No =,

Also, assumption (C) yields
hu, —ul, = (1/n)I(A(q) + wDu_T. € (1/n){(B + wu)lu 1 + B).

Since the last term in the estimate above tends to zero as n = =, we find
u, ~ uin V* as n =« This, together with the fact that V is dense in H
imply that u_ - u weakly in H as n - « from which W=H
immediately follows.

In light of Thcorem 3.1, we may apply Theorem 2.1 with X = H, A =
Agq) and f = f(-;q). We conclude that there exist a unique nonlinear

cvolution system (Uy(t,sia): 0 € s €t € T} on H satisfying (i), (ii) and (iii).
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ol
e ;
::l. " The mild solution u(-;q): [0,T] ~H to the initial value problem (3.1), (3.2) is given
(X f
L
by uy(t;q) = U(t,0;a)u’(q) for t€[0,T}.

2

! 2 ‘
i. Remark. Under additional hypotheses on f(-:q) and u%q) other existence )
P *
*'g.‘ results can be applied to obtain somewhat different notions of a solution to :
)
13U the initial valuc problem (3.1), (3.2). For example (see [6, p.140-144]) if "
K,
i (
‘Q f(-;q) € WI(0,T;:H) and u%q) € Dom(A(q)), then there exists a unique u(-,q): '
N - (
é : [0,T] ~ V satisfying u(-;q) € WHT(0,T;H), A(q)u(-;a) € Lo(0,T;H) and u(t;q) + '
o A(q)u(t;q) = f(t;q) ae. t € [0,T] Or, if u%q) € H and f(-;q) € L,(0,T;V*) ‘
7
‘_‘.: then there exists a unique u(-;q) which is V*-valued absolutely continuous X
K :
e almost everywhere on [0,T], u(-;q) € C(0,T;H) n L,(0,T;V), u(-;q) € L,(0,T;V¥) '
®
E}. and u(t;q) + A(Qu(t;a) = f(t;q), a.e. t € [0,T]. If, in addition, the mapping t -

'K
Y
:‘S: t7f'(t;q) is an element in L2(0,T;V*) for some ¥ 2 1, then the mapping t - ‘
\‘.' t
“:: t7fx(t;q) is in L,(0,T;V) N L4(0,T;H). In particular, when f(-;q) = 0, the i
L ! nonlinear semigroup (Sy(t;q): 0 € t € T) on H defined by Se(;a) = Uy(;0;q),
145y .
j: ) t € [0,T], with generator —A(a) behaves like a holomorphic linear semigroup :
ey
'l' S !
in that it smooths. That is, Sy(t;q)u%q) € Dom(Ayq)), t € (0,T), and the .
. mapping t =t g—t S(t:q)u®q) is an element in L.(0,T:H) for every u%q) € H. )
() \$
s »

:: Also, some generalizations are possible. For example, in assumption (B). the *
LY
‘ term ollu — vI? can be replaced by a term of the form offlu—vI)llu — vl where

®
:' < o -) is a continuous, strictly increasing function on .
Y 3
14N [0,=) satislying o«(0) = O and lim «(x) = « Or, the terms lu — v1? in (B) p
_\n_ x ..
: and livl in (C) can be replaced by llu — vIP and WUviP! respectively, for )
o

o any p 2 2. :
.}'x b
)_: )
o

..'_‘\

o y
s {1
o t
hin '
e )
l..‘ (]
XN ‘
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Vol

e g
i % AL RRENNCA 0
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The development of computational methods for the solution of the
infinite dimensional optimization problem (ID) requires the finite dimensional
approximation of the abstract initial value problem (3.1), (3.2). The general
framework that we are proposing is based upon a classical Galerkin approach.
For each n = 1,2, .. let H_ denote a finite dimensional subspace of H which is
a subsct of V. Let P: H - H_ denote the orthogonal projection of H onto H_
with respect to the <-,-> inner product. We assume that the approximating

subspaces H , and the projections P_ satisfy
(D) For eachveyV, liman -vi =0.
n-v®

Note that assumption (D) and V densely and continuously embedded in H

imply that lim anu —u| = 0 for each u € H,
n—e®

For each q € Q and n = 1,2, ... we define the single-valued operator A (q):

H -H by A (qu_ = v, foru_ € H_ where v _satisfies
(A(q)un,wn> = (vn,wn>, w €H.

That A (q) is a well defined operator from H into H_ follows from the Riesz
Representation Thcorem applied to the Hilbert space H.». and the bounded
linear functional (A(q)un,-> on H_. Also, define fn(-;q): [0, T} -~ H_ and
uxa) € H_ by f (t:q) = P.f(t:q), 0 ¢ t ¢ T, and v%a) = P_u%a), respectively.
Note that f (-;q) € L,(0,T;H ) € L,(0,T;H) and that If () €|f(t;q) for q €Q
and almost every te [0,T).

We consider the sequence of approximating identification problems given

by:
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(ID)) Given observations z € Z, determine parameters an € Q which
minimize
¢.(a) = ¥u (q).2)

where u (q) = u (-;q) is a mild solution to the initial value problem

in H
(3.4) u (t) + A (qu (1) =f(tiq), 0 <t <T
(3.5) u,(0) = up(a)

corresponding to q € Q.

From the definition of the An(q) and the assumptions (B) and (C) on A(q),
using arguments analogous to those used to prove Theorem 3.1, it can be
shown that the operators A _(q) + wl are m-accretive on H . Tt then follows
from Theorem 2.1 that for each n = 1,2, .. there exists a unique nonlinear
evolution system (U (ts;q9): 0 € s €t €T} on H satisfying (i) - (ii1) in the
statement of that theorem with X = H_, f(t) = f_(t;q), and x° = u%q). The
mild solution to the initial value problem (3.4), (3.5) is given by u (t;q) =
U, (t.0;:a)u(@), t € [0,T],

If we assume for the moment that the approximating identification
problems (ID_) have solutions q—n € Q, then it is desirable that they in some
sense approximate a solution q to the original identification problem (ID).
This is in fact the case. For suppose that it can be shown that for any

sequence {q_} CQ with lim q_ = q € Q we have
n—®

(36)  limu (a,) = ua,) in C(0,T;H).

Then {c_;n) C Q and Q a compact subset of the metric space @ imply that there

OBOGOAONOGOORCOA AR ON0 GO OOOOAUNUSIIN OISO
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j:" cxist a subsequence {q )} € (q ) and a g € Q such that lim q = q. For any

k) j joe y]

B.“

:o:!: q € Q the continuity of ¢ implies §
{ |
D . —

e ¥Q) = Huy(a)z) = ¢ (limu_ (q, )2) ‘

it B |

o

o i q q

R - lim ®v, (@, ):2) = lim ¢, (@,)

tj o i Sl ‘
f;: "

oy ¢lim ¢ (q) = lim &u_ (q);z)

\ J J i=® J

WA

£
i

¢ (J!grg u,,j(q);Z) = Huy(a)z)

®(q).

-

N
A
]

-
ey

:: Note that in the discussion above we did not assume that a solution to
N

0 problem (ID) exists. But rather we have shown that the existence of =olutions |
o

§: q, to the approximating problems (ID,) and (3.6) imply the existence of a
‘EE solution g to problem (ID). When the solutign to problem (ID) is unique, the
!-._ sequence (q_} itself converges to q.

::. The existence of a solution C_ln to problem (ID)) for each n = 1,2, .. will
;,:' follow from the compactness of Q and the continuity of & once the continuous
5 dependence result: }Ti‘_n.l’ u (g ) = ua) in C(O,T;H ) whenever {q_}) C Q with
:QS' }Ii)_rno q,, = 4y has been established. Although continuous dependence for the
'g;v finite dimensional systems (3.4), (3.5) could be demonstrated via a
:ﬁ modification to any one of a number of familiar continuous dependence
n

ﬁ results for ordinary differential cquations (see, for example, Hale [12],
g:\: Theorem 1.3.4), it is also easily handled with the approximation theory
.“ developed in the previous section. This and the convergence in (3.6) are

-
el

addressed in the following theorem.
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".. .!
,.:. Theorem 3.2. If assumptions (A) - (D) hold, then :o
A d
" A . . b
o (@) If{a,} CQ with LLn; a, = q, then Ln_.rg u (q,.) = uglay) in C(0,T;H), and b
'\3 (b) If{a,) €Q with Li-rpw q_, = q, then g_rpmun(qm) = u_(qg) for each n € Z*. s-
i L
L] \)
": Proof. Assumption (D) and the continuity of the map q - u(q) from Q into H v
v imply lim ug(qn) = uo(qo) in H. Hence, we will have verified (a) if we can
i n—® 4
4
"'5' show that lxm U (tsig)w_ = Uo(t,s;qo)wo, 0 s £t €T, uniformly in t for It
) a” !
nt
r::' t € [s,T] whenever w € H_ with lim w_ = w, € H We argue this using '
!I.' n—® }
ol A
( Theorem 2.2. Note that assumption (D) implies lim H DH and assumption
k n—*® o
! . ..
.;:' (D) together with the assumed continuity of the map q - f(t;q) from QCQ
N g
()
i. into H for almost every t €[0,T] imply lim fn(t;qn) = f(t;q,) in H for almost !
el n=®
X !
® every t€ [0,T) with the R0ia, ) dominated by a function g€L, (0, T;H)
Y3 )
57-' which i1s independent of n. Thus, we need only to demonstrate H
& ;
Pr > that for some )\, > 0 we have +
A )
oS ¢
(
e (3.7) limJ(Z;A (q) + ww = J(xo;Ao(qo) + whw,
:'H n-.oo ‘
~ )
:‘ in H whenever w €H ,ne€ Z* with Ll-m’ W= W E:
8 i
‘:) Let 3, > 0 and set v = J(3;A (q) + wh)w_ and vy = JO;AQ) + wh)w, :
" <
,t’ We first show that lv_Il is uniformly bounded in n. From assumption (B) we :
o
o obtain K
AN \
xoczllvnll2 < xou)lvn|2 + XO(A(qn)vn - A(qn)e,vn> .
¢
h
1 = (I + M\(A(q) + wD)v v > = v | :2
o - _ &
;‘ + 2,<A(Q))® ~ A(q,)8,v_> = X,<A(q)8,v, > :
Py = (w_v > = v [P+ 2 <A(q))8 ~ A(a,)8,v, > — 3, <A(a,)8,v >
¢
D [ )
E < hw kv I+ 2 1A(gy)8 — A(a, )8l lv | + X kA(ay)8l,Uv_} :E
I )
) J
g /
)

i

B RAX 9‘; ' l.g

0' LR ‘0 RN
'. -'-'.l‘:',t’. c"' ’ .'n".'l'. A"‘l‘. Wy, A"'l‘ 9,0, lhl' ’.‘!' B “' .':"’ "‘I" L A‘ -‘ :.“')'n' DR " "n“'u"‘a
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b

‘8 ': where 6 denotes the zero vector in V. This estimate together with assumption

)

ool (C) yiclds

‘.I.'!l

:,:"‘;: v i € (\ge)™tidw | + o MlA(q, )8 = A(qg)8l. + o'B.

- . -
}j.: Recalling assumption (A) and that lim w_= w,in H, we find that the desired
. n-.oo

WS

'y uniform bound on llv_Il has been established.

]

' *:: Once again, from assumption (B), we find

.\'

; ‘%.: Xoallvn—vollz < xou)ivn—volz + x0<A(qn)vn —A@Q vV, ~ v0>

1496 = v =vl? + N KA(a v, ~ Alagvpy, — P )Y

;j’ X + )‘0<A(qn)vn - A(qo)vo,an0 = vy

g

(i

\-',': + 2 <A(agvg — AlQ vy, — Vo>

W

B = 2P vy = v,V = v >+ LI+ N(A (a,) + WD)V,
®

:" ,: — (I + 2(Ay(qy) + wD)vg,v, =P vy>+ <vg=v v —P v

S
".\d."

; :- + 2 <A(q v, — AlggveP vy — Vo

P
N

;‘n. + X0<A(q0)v0 - A(qn)vo,vn - v0>

;‘; = X0w<an0 VgV < v0> + (wn —WoV, T an0> —lv,—P_v, |2

o,

:-.\ + x0<A(qn)vn — A(QQVpP, Vo ~ vy
e

+ 2 <A(QgIvg — AQ VeV, — Vo2
o EAWIP vo=vollillv vl + Iw —w i v —v i

4 -y

"t:;. + llwn—woll.lanv0~v0lI + N lA(q v, — Alqgv P vy = v il

Vg

s + M HA(agvy = Alg vy, — v I
L

:5:0'0 . 1, 0, .

KX ; The estimate ab ¢ 5—- a‘+ E b* for any n > 0 and assumption (C) allow wus to

R "

,:!:..:n argue

ks PPN 3w
® Lfy —v 12 ¢ —Lp vy —v |2 Iw -w 12 + Iw —w B P v —v |

- 2 n 0 2w o] 2 o n 0 n 0 no0 0

|' ) 0

o AN ) 4 ¥ \!
:"‘:0.‘." IR l"" .\ 5 .\ h * l‘.‘ l. M 'l lga\!‘o \‘ l'o \'n.l"‘\".ta‘l' "‘t‘. W, l‘. l‘:‘:".ﬂ‘.. :! g, ::‘ (X .:'\. "'ﬂ ) ' 0 KN "'
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S 3 ) 3
\ + N UlA(q v, — A(qo)vol.Iano = vl + Z_Qa VA(qy)vy — Al )v, e
h 4 ‘
WY
‘ ) ol
) 3w put Ao+l 3 2 ¥
, N ok +(Q )lva—vllz+ a +u—]w - w|?
{ 2a 2 n'0 o D 2 Jn 0 =
\ 3 R ',
. + N(B(lv 1+ Hv I} + 2}IP v, — vl + —Q-za TA(qpvy — A(g v lIs . :
. From this, the uniform bound on I!vnll, lim w_ = w, in H and assumptions
) (A) and (D) allow us to conclude lim v_= Vo in V and that (3.7) holds. ,‘:
n—+®
"I
An analogous, but somewhat simpler argument can be used to verify (b). :":
> !
(.‘ We usc Theorem 2.2 to show that for n € Z*% fixed, lim U (ts;q )w, =
m-ow
4'.: U (ts;g)wg, 0 € s €t €T, uniformly in t for t € [s,T] whenever w_,w, € H_ \::
o )
. with lim w_ = wg in H. Clearly lim f (-a,) = £, (-;q,) in L,(0,T;H ) so that 2
; Co m—® m—® .;
W,
' we need only to show that for some ), > 0,
-
- A
LY ||'
3‘ }ri‘_r:nm JOgA (a) + UI)Wm = J(2gA (ap) + whw, :
| 3
* in H whenever L:Dco w = woin H. Let v = JOgA (a,) + whw_ and v, =
oy o
::: JOyA (qy) + wl)w,. Then from assumption (B) .é:
-, {
'\I ::.’
(L™ (X
: xoallvm—vollz 4 xo(.)|vm—v0]2 + XO<A(qm)vm - A(qm)vo,vm—v0> .}
e = {1 + 2\f(A (q_) + whv = (1 + M(A () + W)vev, — % :1'
.5 t
h : - |vm—v0|2 + X0<A(q0)v0 - A@ VeV, ~ Ve v
5 "
y . =Aw_-wg, v v > - |vm—~v0|2 + )‘0<A(q0)v0 =A@ VoV T Vo2 W
ht < lw_—wollllv,_—vol + A 1AV, = Ala)voldv_ = vyl
o
o or
ol !
'L: v —vl!<L-lw - w -I—IIA( W, — A(q ).k
® m O\Xa m Ol-“(x ERVAS) qm'O"
0
.
“
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o
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g
) Assumption (A) and lim w_ = w/  in H yield the desired result and the
" m—®
Yy .
O theorem is proved.
i
{
Rcmark. Inpractice, the approximating identification problems(ID )are solved
‘\:‘.
: using standard iterative search techniques (for example, steepest descent, Newton’s
A
'yl . . . ..
mcthod, etc.) requiring the evaluation of ¢ (q) for g € Q at cach step. This in turn
\
l: requires the integration of the finite dimensional initial value problem (3.4), (3.5).
ik
Oncea basisfor H_has been chosen, the solutionto(3.4),(3.5)can be computed using
i L any standard numerical integrator for ordinary differential systems.  Also, the
'_'5;: parameter space @ and the admissible parameter set Q are frequently functional in
N
,;-t:‘ naturc and infinite dimensional.  When this is the case the set Q must also be
D)
Wl discretized. Suppose that foreachm =12, ... I™ QCQ ~Q isa continuous map with
®
i :,' finite dimensional range and that lim I™(q) = q with the convergence uniform
.( y m—b@
2 . .
2 5-1;4 in q for q € Q. Set Q™ = I'™(Q) (note that Q™ jis a compact subset of Q) and
( consider the identification problems (IDn“‘) defined to be the problems (ID )
,‘"i with Q replaced by Q™ It is clear that each of these problems admit a
.
' E;J solution 6:‘ and it is not difficult to argue that there exists a2 subsequence
_m. . . —m; —_ - .
‘ {q“i) C {q";‘) with ln_n}w qn;= a, g a solution to problem (ID) (see, for example,
jik
-. [4])). Once bases for H_ and the range of I™ have been chosen, problem (ID])
o
Y
¢ j‘- involves the minimization of a functional over a compact subset of Euclidean
iy
Y
fine Lo space subject to finite dimensional constraints.
®
7
’-'_K';“ Remark (Nonautonomous systems). Theorems 2.1 and 2.2 remain valid for
By - .
’1.."_“
‘ certain classes of temporally inhomogeneous or time dependent operators A =
N
» A(t). To be more precise, the family of operators A(t): X - 2X must be
(Lo
.t m-accretive on X for almost every t € [0,T] and must satisfy
AT
ooy
3 :.‘.::
oS
®
i‘:f
.- »
A ‘::.\-:
\),\_
*5:'
%S
°
S
‘v
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1 " m . " ] v
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(3.8) HOGA()x — J(MA(s)xly € AMh(t) — h(s)lxL(Ixly)

for each x € X, every ) satisfying 0 < ) ¢ \g for some Xj > 0, some h €

L ,(0,T;X), some continuous, non decreasing function L:{0,) - [0,) and

almost every t,s € [0,T] (sce [8], [9)). (Note that for simplicity we have taken
w = 0; however, the discussion to follow remains valid for any w € R.) The
primary motivation for developing the framework outlined above was to
define readily verifiable conditions on the operators A(q): V = V* that if
satisfied would (i) also automatically be satisfied by the Galerkin

approximation A _(q) and (ii) lead to the desired convergence of solutions to

the approximating identification problems to a solution to problem (ID). The
natural assumption to add to (A) - (C) that certainly satisfies criterion (i) and

that could conceivably lead to an estimate of the form (3.8) in H is that

o (3.9)  BA(ta)v — A(s@)vi, € Jh(t) - h(s) (v

for each v € V, almost every s,t € [0,T] and some h € L,(0,T;H) and some

. continuous nondecrcasing E: [0,) = [0,«), both of which do not depend upon

q € Q. Unfortunately, however, we can only show that (3.9) leads to an

estimate of the form
»
:SE (3.10) HOGA(Ga)u = J(GA(s;a)ul € v [h(t) — h(s) L(jul)

for each u € H. Morcover, it is not clear to us how, or if, the proof of the
fundamental Theorem 2.1 given in [9]) could be modified so that (3.10) would

suffice.  We have explored alternative approaches and developed other

techniques for treating the nonautonomous case (for example, in the lincar
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case, based upon some ideas in Tanabe [18], and in the strongly monotone casc,
via a variational formulation which can be found in Barbu (6]). Thesc

results will appear soon in forthcoming papers.
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4. Applications and Examples

We bricefly describe some classes of systems to which the gencral

AN framcwork developed in the previous section applics. In our discussion below
-.\.._‘
‘I\.- . - - . -
_: we consider theorctical aspects only. Implementation questions will be treated
::‘:::' and the results of our numerical studies will be reported on elsewhere.
)
4 . , L o
M Examplc 4.1. Lincar rcgularly dissipative opcrators. The approximation
A
N
) -;t- theory for inverse problems for systen:s involving lincar regularly dissipative
‘!
operators was treated in detail by Banks and Ito in, and is the central focus
'_-::" of, {2] and [3]. We show here that the linear theory is a special case of the
o
N nonlincar theory given in Section 3.
o
3.4
. i Let the spaces H, V, V¥ and Q and the set Q be as they have been defined
‘O3
™ - .
i : above. For cach q € Q let a(g)(-,-) be a sesquilinear form defined on V x V
‘o ) o ..
SO which satisfies the conditions:
-
t N (A') For each v € V the mapping q ~ a(q)(-,v) is continuous from Q C @
O\ . .. .
\j\ into V* That is given € > 0 there exists a & > 0 such that
LS%Y
"\.::'\.'
o )u,v) = a(@)(u,v)
v su a u,v) —a uv)l < €
:‘. ue\p/ I (qO q ).
2 hull=1
D
.‘,‘\-’.
,}:', whenever d(qo,q) < & where d denotes the metric on Q.
N\
\ 1
2 . . .
r':j (B') There exist an w € R and an « > 0, both independent of g € Q, for
N
, which a(q)(v,v) + Wv|? 2 «llvii? for every v € V.
o (C') There cxists a constant B > 0, independent of q € Q, such that
.
i . la(g)(u,v)} € Blufl Ivk for cvery u,v € V.
_\::-:
e
o
o
A
e
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When conditions (A') - (C') are satisficd it is not difficult to argue that for

cach q € Q an operator A(q) € &V,V*) can bc defined by
[A(q)v](u) = <A(q)v,u> = a(q)(u,v),

u,v € V and that A(q): V -~ V* satisfies (A) - (C). It then follows from
Theorems 2.1 and 3.1 that there exists a uvnique nonlincar evolution system

{Ug(tis;a): 0 € s €t € T} on H corresponding to the initial valuc problem

a(t) + Aj(qu(t) = f(t;q), 0 <t €T

u(0) = u%q)

where for each q € Q, f(-;q) € L (0,T;H), u%q) € H and Ao(q): Dom(A(q)) C
H - H is the restriction of A(Qq) to the set Dom(A(q)) = {v € V: A(q)v € H).
The operator —A(q) is the infinitesimal generator of an analytic semigroup
{To(t;q): t 2 0} on H (see [18]) and for ¢ € H

t
(@) Utse = Tsas + | T mar

8
It can be shown that the semigroup {Ty(t;q): t 2 0) admits an extension {T(t;q):
t 2 0) which is an avnalytic semigroup on V* with generator A(q) V C V¥ - V*,
Also the restriction of {T(t;q): t 2 0} to V, call it {'i:(t;q): t 20),is a :nalytic
semigroup on YV with generator K(q): Dom(X(q)) C V =V, the restriction of
A(q) to the sct Dom(A(Q)) = {v € V: A(q)v € V) (see [3]. [18]). Consequently,

with appropriate assumptions on f(-;q), the cvolution system {U(ts;q): 0 < s

IN

t € T) admits an extension {(U(t,s;q): 0 € s €t € T} which is an evolution
system on V* and a restriction {U(t,s;q): 0 €s €t € T} which is an evolution

system on V.

O .Oqi .‘

c.' "'t."l"' h"r.‘ t."c. o

‘
Q.‘.
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0 and

It is clear from (4.1) that when A(q) is linear, we may take f(-;q)
consider only the approximation of the semigroup {To(t;q): t 2 0). For each
n = 1,2, .. let the finite dimensional subspaces H_of H and the corresponding
orthogonal projections P be as they were defined in Section 3 and assume
that condition (D) is satisfied. Denote the Galerkin approximations to A(q)
(i.e. the restriction of A(q) to an operator from H_ into H: = H ) by A (q) and

set Tn(t;q) = exp(—tA (q)), t 2 0. Theorem 3.2 then implies that
(42)  lim [T (5a)P u’a,) = To(t:a)u’(@y)l =
n

uniformly in t, for t € {0,T) whenever {9} C Q with Ll_g; a, = 9, € Q, and

the mapping q - u%aq) is continuous from Q C Q into H. In addition, recalling
that we required that H CcV for all n = 1,2, ..., an inspection of the proof of
Theorem 3.2 reveals that in the linear case with the existence of the semigroup

{”f‘(t;q): t 20} on V, we may apply Theorem 2.2 with X = V and conclude that
. . 0 — Yy 0 =
(4.3) L’-»T» IT (1,9,)P u(q,) — T(t;gu (gl =

uniformly in t for t € [0,T) whenever lim a, = Qg u%q) € V and the map
n—®
q - u%aq) is continuous from Q into V (see also [3]). Then for ¢ € H, setting

t
U (ts;0)P ¢ =T (t-s;q)P ¢ + J[ T (tT;Q)P f(T;q)dT

8
under appropriate assumptions on f(-;q), (4.2) and (4.3) continue to hold with
Tn(t;q), To(t:q), and "i"(t;q) replaced by U (t,5;q), Uyts;q), and tJ(t,s;q),

respectively, with the convergence being uniform in t, for t € [s,T]. Hence the
linear thcory and results of [3] are a special case of the nonlinear theory of

Section 3.
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{l

-x. ”
e

We note that in the context of the identification problem, the fact that

'.“:

S: the stronger V-convergence given in (4.3) can be obtained is significant.
(‘; . Indced, (4.3) permits the rclaxation of the continuity assumption on the
E :}' performance index ¢ to the requircment that for each z € Z, the mapping u -~
:". ®u,z) be continuous from C([0,T}V) into Rt. This can have the effect of
K

"_ significantly enlarging the class of allowable obscrvations. For example, in
Yytel

‘”w._ the case of a onc dimensional parabolic system formulated in H = L, with V

in H!, spatially discrete (i.c. pointwise, as opposed to distributed in space)

Pt o d

mecasurecments will suffice (see [3] and [5]).

Py

‘I
[y

Among the class of linear regularly dissipative operators which arise from

S
“

a form satisfying (A') - (C') are the familiar elliptic partial differential

2
+4+1
operators on L,. Bricfly, let @ be a region in R? and let Q= x L(Q). Let
1

n=

hY
LA,

Vo 122

NI

Q becacompact subsct of Q with the property thatif g= {(aij, b,, ¢ i,j=l,...,n] € Q,

P
Ay S 4
Fard

v then for some o« > O independent of q € Q.

F 3

[
2
ey I 20058, 2 afgl?

~ 1,1=
1 -‘.-
§--" for every x € Q, and every § € RY For q € Q and u,v € HY(Q) set

Ju(x) 0Ov(x)

2
2 _ y
; a(@)(u,v) I Q{if:l % B oy,

1?' ; NPCLL(CD) ot Jax
o + L i(x) v vi(x) + c(x)u(x)v(x

| S0 i
b with H = L,(0) and V any closed subspace of H!(Q) containing HY(Q), it can be
ol shown (scc [18]) that a(q)(-,-) satisfies (A') - (C'). The operator A(q) is given

Tu formally by

(L
3

v Y4
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& F b0 e )
a,;(x) ax, = () ax. | o).

i

2
(44 A@=-L —
1,)=1 axj

When 90 is sufficiently smooth, A(q) is the elliptic operator given by (4.4), and

Y
1, ) . . .
[ VY is chosen to be either Hé(n) or HYQ), the equation (3.1) becomes a parabolic
il’ partial differential equation with either Dirichlet or Neumann boundary
N
‘O ..

v conditions.
&
F"- For H = L(Q) and V a subspace of HY(Q), choosing the approximating
Yol
Y subspaces to be the span of an appropriate collection of first order spline
ey
( functions will typically satisfy assumption (D) (see [15] and Example 4.2
SN
o, below).
e

N\

g Example 4.2. Nonlincar Elliptic Operators. Let Q be a bounded region in R?
° ) ..

-;{1 with smooth boundary I = 80 For o« = (o, .., @) @ multi-index, let | = o« +
,:.( a, + --- + ap and denote the oth order generalized, or distributional
"

",

N4 . . . .
i derivative of a function u by D%u; that is,
(,;. o g

S8 D%u(x) = < ey u(x), x€q.

E: axl axﬂ

i T .
s Let m be a nonnegative integer and let Su denote the vector valued function
il of length N = (’f"’) whose components are all of the partial derivatives of u
"-

B A~

: of order grcater than or equal to zero and less than or equal to m.

14

b For cach multi-index « with |of € m, let (x,§) = a_(x,{) be a real valued
o function defined on @ x RN which is measurable in x and continuous in {. We
-~ assume that

N

-C: (1) there exist a g € L,(R) and a positive constant ¥ such that

Bt

>
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[a Lx,01 € (&1 + 8(x))
for almost cvery x € O, each { € RN and all « with jof € m, and

(2) there exists a positive constant X such that

(4.6) o P38 T AGMNEg M) 22 B i n?

< o) €

for almost every x € @ and all {,n € RN
Let H = L,(Q) and let V be any closed subspace of H™(Q) which

contains Hg‘(Q). Dcfine the operator A: V » V* by

xm

4.7) (Au)(v) = | ZI‘ I aa(x,su(x))D“v(x)dx,
' 0

for uv € V. The operator A given by (4.7) is the distributional form of the

formal differential operator

(4.8) (Au)(x) = | Z( (-1)°D%a (x,5u(x)).

al\

A differential operator of the form (4.8) is referred to as a nonlinear elliptic

operator and the partial differential equation

..a_u. —1\YD & =
(49 Z0+ T (DTDgx,8u(tx) = (1)

is said to be of nonlinear parabolic type. When V = HZY(Q), a solution in V*

to the abstract equation
u(t) + Au(t) = f(t)

with A given by (4.7) corresponds to a variational solution to (4.9) which

satisfics Dirichlet toundary conditions. When V = H"(Q), a variational

solution to the Neumann problem is obtained. Note that in the linear case we

DUDLUDOLDN
0, 00 000 1
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have

a (x,bu(x)) = |B;£Sm aa'B(x)DBu(x).

W2y r e 57; 2
CE P EL

Under the assumptions above, it is not difficult to show that A given by

- &
-~
)

e (4.7) is hemicontinuous and satisfies conditions (B) and (C) given in Section 3.
)
DA
:‘j With an appropriate choice of the space Q and the set Q, condition (A) can be
* ﬁ
}'s satisfied as well.

A

A quasilinear model for heat conduction or mass transfer in which the

heat or mass flux is a function of the temperature or mass fraction gradient

Vs

A

discussed in [16] and [17] leads to a nonlinear elliptic operator and a nonlinear

P e

parabolic partial differential equation of the forms (4.8) and (4.9), respectively

with m = 1. Let @ be a bounded region in R? with smooth boundary and let

gt

Q = L (2 x R!). Let Q be a compact subset of Q with the property that

P g
/l;,.

"

q € Q if and only if the mapping { - q(x,{) is C! on R? for almost every

x € 01 and there exists a X > 0 (which does not depend on q) such that

W T, W X XA
r'f‘

(4.10)  8,9a(x.8)[¢_g (5 = M) + Q(x,0)(5; = m) > ML, — ),

N )

-

pp——"

J for 1 = 1,2, .., 1, almost every x € Q and all 8,{,n € rI (When 2 = 1, the
: :“.', function gq(x,8) = g(§) = (1 — .5¢'§2) satisfies (4.10).)

‘_,3 Let H = L(Q) and let V be any closed subspace of HY(Q) which contains
. . Hé(Q). Then V. CH C V* and for each q € Q define A(q): V = V* by

A (4.11)  (A(Q)u)(v) = j' a(x,Vu(x))Vu(x)" Yv(x)dx
0

3\- for u,v € V. Note that for each q € Q the operator given by (4.11) is of the

v‘-’}
5

form (4.7) with

-
e
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" )
j (4.12)  a_(x,5u(x)) = a(x,%u(x))D%u(x) v
)
::,“ A
¥
(' for x € 0t and all a with |of = | and ag, = 0 for j4 = 0. The nonlinear o
\
" parabolic partial differential equation (4.9) takes the form ‘
8 Bt
K X
‘::': a—u -v v Vu(t f 0 0 :
R 50 (0¥ 7 VAl Tu(tx))vu(tx) = f(t,x), t>0, x €. R
e
I Taking II- Il to be the usual norm on H!(Q), it follows that '
|
+ ‘.
o s
L) _ _
(.:“ TA(qgu — A(qulls € la, q1|L°°IluII )
P ¥ . . - ;
.\5 for each u € YV and qpq, € Q. Since Q is a compact subset of L(Q x R”), 1t 1s R
- ot
)Vf easily verified that a_ given by (4.12) satisfies a growth condition of the form ‘:
8 [+ 4 .A
v, )
" (4.5) with ¥ and g independent of q € Q. An application of the mean value :
; )
N theorem together with assumption (4.10) imply the existence of a ) > O, )
H LY
A « »
% independent of q €Q, for which (4.6) holds. Consequently the conditions (A), (B), "
*' '
I v v
(" and (C) given in Section 3 are satisfied, and our general theory can be applied.
- .
$ With regard to approximation, polynomial spline function based Galerkin :‘
L . I
"-j subspaces can often be shown to satisfy condition (D). For example, when N
[\ )
L™
3 2 =1 and 0 = (0,1) in the nonlinear heat conduction/mass transfer example l
N
‘|:l discussed above, the subspaces H_ can be chosen as the span of the linear
) n
‘i i
: B-spline ("hat") functions with respect to the uniform mesh {0, I/n, 2/n, .., 1} A
Y y
' appropriately modified to satisfy stable, or geometric, boundary conditions. v
- .
:lj:’ Familiar error estimates for interpolation and the Schmidt inequality can then ,
(X ;
‘ be uscd to verify that condition (D) is satisfied (sce [5]). Generalization to
Q
by .
' higher dimensions is possible, and can often be achieved via tensor
! ) . y
""- products of one dimensional elements (sce [15]). ¢
y
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[ 5. Concluding Remarks o:._
3 )
W ‘:ﬁ
(’. We have developed a general abstract approximation framework for the 4
:o, identification of nonlinear distributed parameter evolution systems. The class o,
' N
. . . t
% of systems to which our theory applics are those whose dynamics can be v(
¥t
Q
a3 described by a nonlinear operator which satisfies conditions that arc the N
\
' natural nonlinear extensions, or analogs, of the properties of regularly oy
: dissipative, or abstract parabolic, linear operators. The approach we have ::
- '
oy taken is based upon the defining of a sequence of approximating finite % :
N dimensional identification problems in which the systems to be identified are -3
» '
N :
W . . . .. . . e . . . hal
y) Galerkin approximations to the original, underlying, infinite dimensional
[~ ot
N . . R . . 50
N nonlinear dynamics. Under a weak continuity assumption with respect to the O
e
.:' unknown parameters to be identified, equi-boundedness and equi- s:
. -
monotonicity conditions, and an approximation assumption on the Galerkin N
i ;‘\
4 subspaces (all of which are readily verified for wide classes of nonlinear P

—~,

distributed systems and finite element subspaces), we are able to demonstrate

\
that solutions to the approximating problems exist, and, in some sense, ﬁ!

Ao ufal

approximate (i.e. subsequential convergence) solutions to the original infinite )

N

‘Wi dimensional identification problem. We have shown that the linear theory 3
‘o4 presented in [2] and [3] is a special case of our nonlinear framework and that :qt
"W our rcsults are applicable to a reasonably wide class of nonlinear elliptic X%
opcrators and corresponding nonlinear parabolic partial differential equations. 0y
X In particular, we have considered application of our theoretical framework to N

a quasi-linear model for heat conduction or mass transport. T4

e

,'v.._,.-
T

.vo-.

o

'\ (NN RO clo OIS 1] |||
B e A R R R SR R R e "'o"‘n'. N RN ‘.ﬂ PRI "‘ ‘»!

.'l



3

ol
-

o
o e

{;‘C

-
R

lhtst

P i

’

,IIJ -
Ay i
‘ ‘-’-.I

2

v

A
El M s

‘-

’ -
! AJ‘?J"IE

-
-
-

_—'. . ° R
’L ,A.(L}J. A}l\r{ﬂ

Y I Z P 5

%
'

b

YN

n

¢
»,
ie

,?rq

[ .o d =
&

I~‘h

R

2 @p s
b

&

X
»
4 A

PR

[ 8§

’
*

4

-’a S > &
@ 7S

¥ °x

1

v'. ,'l,"!. ‘

.l

B4

-33-

The gencral approximation recsult for nonlinear e¢volution systems
discussed in Section 2 is applicable to a much broader class of nonlinear
dynamical systems than we subsequently treated in Section 3. For example,
this class of systems would include those with dynamics described by set
valued maps or multifunctions, and (after minor modification to the
general theory) time dependent or nonautonomous operators. We are
currently investigating these features of the general approximation theory
in the context of paramecter estimation problems. Also, we would like to
be able to weaken the somewhat restrictive strong monotonicity condition.
Any progress that we might make in these efforts would have the potential
to significantly enlarge the class of nonlinear systems to which our theory
and framework would apply. Finally, extensive numerical or
computational studies designed to demonstrate the feasibility and point out
the limitations of our schemes and general approach are currently

underway and will be reported on in a forthcoming paper.
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